A320 Series

Gravity Referenced, Ultra-Low Range Linear Servo Accelerometer

Features

- Ultra Low Range ±1/10 g to ± 2g
- High-level output signal
- Fully self-contained connect to a DC power source and a readout or control device for a complete operating system
- Extremely rugged, withstands 1500g shock

- Geophysical, seismic and civil engineering studies
- Flight test monitoring
- Structural monitoring
- Low acceleration analysis

Description

The A320 Series are high precision, closed loop, servo balance, ultra-low range accelerometers that can be used for a wide variety of industrial and aerospace applications. Despite its very low measuring range, the A320 Series are extremely robust and shock resistant. Electrical terminations are via 6-pin, bayonet lock connector or solder pins.

A320 Series

Gravity Referenced, Ultra-Low Range Linear Servo Accelerometer

Environmental Characteristics

°C -18 to 70 Operating Temperature Range Survival Temperature Range °C -40 to 70 Constant Acceleration Overload g

Shock Survival 1500g, 0.5msec, ½ sine

Vibration Endurance 35g rms, 20 Hz to 2000 Hz sinusoidal

Enviromental Sealing IP65

Specifications by Range @ 20°C

Ranges		± 0.10g	± 0.25 g	± 0.5 g	± 1.0 g	± 2.0 g
Excitation Voltage	Volts dc			±12 to ±18		
Current Consumption	mA (nom)			±15		
Full Range Output (FRO) (see notes 1 & 5)	Volts dc	±5 (option of ±10Vdc)				
Output Standardisation	% FRO (max)			±2		
Output Impedance	Ω (max)			10		
Output Noise (DC to 10kHz)	Vrms (max)			0.002		
Non-Linearity (see note 2)	% FRO (max)			0.05		
Non-Repeatability	% FRO (max)	0.02	0.02	0.02	0.01	0.01
Resolution	% FRO (min)			0.0005		
Frequency Response (-3dB)	Hz (nom)	20	30	40	55	60
Cross-axis sensitivity (see note 4)	g/g (max)			± 0.002		
Zero Offset (see note 3)	Volts dc (max)			± 0.10		
Thermal Zero Shift	%FRO/°C (max)	± 0.03	± 0.01	± 0.005	± 0.005	±0.005
Thermal Sensitivity Shift	%Reading/°C (max)	± 0.03	± 0.01	± 0.006	± 0.006	±0.006
EMC Directive	EN61326: 1998					
EMC Emissions	EN55022: 1998			30 MHz to 1 GHz		
EMC Immunity	EN61000-4-2: 1995 inc A1: 1998 & A2: 2001			± 4 kV		
	EN61000-4-3: 2002			10 V/m		
	EN61000-4-4: 2004			± 1 kV		
	EN61000-4-6: 1996 inc A1: 2001			3 Vrms		
	EN61000-4-6: 2007			10 Vrms		
	A1: 2001		30 A/m			

Notes

- Full Range Output is defined as the peak-to-peak acceleration, i.e. ±1g = 2g peak-to-peak
- Non-linearity is determined by the method of least squares under constant acceleration conditions.
- Zero offset is specified under static conditions with no vibration inputs
- Cross-axis Sensitivity is the output at 1g in cross-axis when tested under static acceleration conditions

How to Order

Specify model type with appropriate range; e.g. an A323-0001-0.5G is an accelerometer with connector and a range of ±1/2 g; an A325-0001-0.25G is an accelerometer with solder pins and a range of $\pm \frac{1}{4}$ g Specify Mating Connector 3CON-0009 if required.

CE

